Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Extraction Attacks against Recurrent Neural Networks (2002.00123v1)

Published 1 Feb 2020 in cs.CR and cs.LG

Abstract: Model extraction attacks are a kind of attacks in which an adversary obtains a new model, whose performance is equivalent to that of a target model, via query access to the target model efficiently, i.e., fewer datasets and computational resources than those of the target model. Existing works have dealt with only simple deep neural networks (DNNs), e.g., only three layers, as targets of model extraction attacks, and hence are not aware of the effectiveness of recurrent neural networks (RNNs) in dealing with time-series data. In this work, we shed light on the threats of model extraction attacks against RNNs. We discuss whether a model with a higher accuracy can be extracted with a simple RNN from a long short-term memory (LSTM), which is a more complicated and powerful RNN. Specifically, we tackle the following problems. First, in a case of a classification problem, such as image recognition, extraction of an RNN model without final outputs from an LSTM model is presented by utilizing outputs halfway through the sequence. Next, in a case of a regression problem. such as in weather forecasting, a new attack by newly configuring a loss function is presented. We conduct experiments on our model extraction attacks against an RNN and an LSTM trained with publicly available academic datasets. We then show that a model with a higher accuracy can be extracted efficiently, especially through configuring a loss function and a more complex architecture different from the target model.

Citations (14)

Summary

We haven't generated a summary for this paper yet.