Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Monodromy in Prolate Spheroidal Harmonics (2001.11270v1)

Published 30 Jan 2020 in math-ph, math.DS, and math.MP

Abstract: We show that spheroidal wave functions viewed as the essential part of the joint eigenfunction of two commuting operators of $L_2(S2)$ has a defect in the joint spectrum that makes a global labelling of the joint eigenfunctions by quantum numbers impossible. To our knowledge this is the first explicit demonstration that quantum monodromy exists in a class of classically known special functions. Using an analogue of the Laplace-Runge-Lenz vector we show that the corresponding classical Liouville integrable system is symplectically equivalent to the C. Neumann system. To prove the existence of this defect we construct a classical integrable system that is the semi-classical limit of the quantum integrable system of commuting operators. We show that this is a semi-toric system with a non-degenerate focus-focus point, such that there is monodromy in the classical and the quantum system.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.