Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Random Kernels of Residual Architectures (2001.10460v4)

Published 28 Jan 2020 in cs.LG and stat.ML

Abstract: We derive finite width and depth corrections for the Neural Tangent Kernel (NTK) of ResNets and DenseNets. Our analysis reveals that finite size residual architectures are initialized much closer to the "kernel regime" than their vanilla counterparts: while in networks that do not use skip connections, convergence to the NTK requires one to fix the depth, while increasing the layers' width. Our findings show that in ResNets, convergence to the NTK may occur when depth and width simultaneously tend to infinity, provided with a proper initialization. In DenseNets, however, convergence of the NTK to its limit as the width tends to infinity is guaranteed, at a rate that is independent of both the depth and scale of the weights. Our experiments validate the theoretical results and demonstrate the advantage of deep ResNets and DenseNets for kernel regression with random gradient features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Etai Littwin (25 papers)
  2. Tomer Galanti (31 papers)
  3. Lior Wolf (217 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.