Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Catch Piglets in Flight (2001.10220v1)

Published 28 Jan 2020 in cs.RO, cs.CV, and cs.LG

Abstract: Catching objects in-flight is an outstanding challenge in robotics. In this paper, we present a closed-loop control system fusing data from two sensor modalities: an RGB-D camera and a radar. To develop and test our method, we start with an easy to identify object: a stuffed Piglet. We implement and compare two approaches to detect and track the object, and to predict the interception point. A baseline model uses colour filtering for locating the thrown object in the environment, while the interception point is predicted using a least squares regression over the physical ballistic trajectory equations. A deep learning based method uses artificial neural networks for both object detection and interception point prediction. We show that we are able to successfully catch Piglet in 80% of the cases with our deep learning approach.

Summary

We haven't generated a summary for this paper yet.