Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modular Neural Network Policies for Learning In-Flight Object Catching with a Robot Hand-Arm System (2312.13987v1)

Published 21 Dec 2023 in cs.RO, cs.AI, and cs.LG

Abstract: We present a modular framework designed to enable a robot hand-arm system to learn how to catch flying objects, a task that requires fast, reactive, and accurately-timed robot motions. Our framework consists of five core modules: (i) an object state estimator that learns object trajectory prediction, (ii) a catching pose quality network that learns to score and rank object poses for catching, (iii) a reaching control policy trained to move the robot hand to pre-catch poses, (iv) a grasping control policy trained to perform soft catching motions for safe and robust grasping, and (v) a gating network trained to synthesize the actions given by the reaching and grasping policy. The former two modules are trained via supervised learning and the latter three use deep reinforcement learning in a simulated environment. We conduct extensive evaluations of our framework in simulation for each module and the integrated system, to demonstrate high success rates of in-flight catching and robustness to perturbations and sensory noise. Whilst only simple cylindrical and spherical objects are used for training, the integrated system shows successful generalization to a variety of household objects that are not used in training.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. H. Yu, D. Guo, H. Yin, A. Chen, K. Xu, Y. Wang, and R. Xiong, “Neural motion prediction for in-flight uneven object catching,” CoRR, vol. abs/2103.08368, 2021.
  2. K. Dong, K. Pereida, F. Shkurti, and A. P. Schoellig, “Catch the ball: Accurate high-speed motions for mobile manipulators via inverse dynamics learning,” CoRR, vol. abs/2003.07489, 2020.
  3. B. Bäuml, T. Wimböck, and G. Hirzinger, “Kinematically optimal catching a flying ball with a hand-arm-system,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 2592–2599.
  4. B. Bäuml, O. Birbach, T. Wimböck, U. Frese, A. Dietrich, and G. Hirzinger, “Catching flying balls with a mobile humanoid: System overview and design considerations,” in 2011 11th IEEE-RAS International Conference on Humanoid Robots, 2011, pp. 513–520.
  5. S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1049–1065, 2014.
  6. S. S. M. Salehian, M. Khoramshahi, and A. Billard, “A dynamical system approach for softly catching a flying object: Theory and experiment,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 462–471, 2016.
  7. S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical systems with gaussian mixture models,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957, 2011.
  8. H. Merzic, M. Bogdanovic, D. Kappler, L. Righetti, and J. Bohg, “Leveraging contact forces for learning to grasp,” in 2019 IEEE International Conference on Robotics and Automation, 2019.
  9. W. Hu, C. Yang, K. Yuan, and Z. Li, “Learning motor skills of reactive reaching and grasping of objects,” in 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2021.
  10. J. Chen, S. Shen, and H. Y. K. Lau, “Hitting flying objects with learning from demonstration,” in 2017 18th International Conference on Advanced Robotics (ICAR), 2017, pp. 55–60.
  11. Y.-B. Jia, M. Gardner, and X. Mu, “Batting an in-flight object to the target,” The International Journal of Robotics Research, vol. 38, no. 4, pp. 451–485, 2019.
  12. S. Kim and A. Billard, “Estimating the non-linear dynamics of free-flying objects,” Robotics and Autonomous Systems, vol. 60, no. 9, pp. 1108–1122, 2012.
  13. K. Zeng, R. Mottaghi, L. Weihs, and A. Farhadi, “Visual reaction: Learning to play catch with your drone,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11 570–11 579.
  14. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” http://pybullet.org, 2016–2021.
  15. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  16. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017.
  17. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.
  18. B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Yale-cmu-berkeley dataset for robotic manipulation research,” The International Journal of Robotics Research, vol. 36, no. 3, pp. 261–268, 2017.
Citations (3)

Summary

We haven't generated a summary for this paper yet.