Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Prager-Synge Inequality and Equilibrated Error Estimators for Discontinuous Elements (2001.09102v1)

Published 24 Jan 2020 in math.NA and cs.NA

Abstract: The well-known Prager-Synge identity is valid in $H1(\Omega)$ and serves as a foundation for developing equilibrated a posteriori error estimators for continuous elements. In this paper, we introduce a new inequality, that may be regarded as a generalization of the Prager-Synge identity, to be valid for piecewise $H1(\Omega)$ functions for diffusion problems. The inequality is proved to be identity in two dimensions. For nonconforming finite element approximation of arbitrary odd order, we propose a fully explicit approach that recovers an equilibrated flux in $H(div; \Omega)$ through a local element-wise scheme and that recovers a gradient in $H(curl;\Omega)$ through a simple averaging technique over edges. The resulting error estimator is then proved to be globally reliable and locally efficient. Moreover, the reliability and efficiency constants are independent of the jump of the diffusion coefficient regardless of its distribution.

Citations (7)

Summary

We haven't generated a summary for this paper yet.