Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Adversarial Attack on Community Detection by Hiding Individuals (2001.07933v1)

Published 22 Jan 2020 in cs.SI, cs.CR, cs.LG, and stat.ML

Abstract: It has been demonstrated that adversarial graphs, i.e., graphs with imperceptible perturbations added, can cause deep graph models to fail on node/graph classification tasks. In this paper, we extend adversarial graphs to the problem of community detection which is much more difficult. We focus on black-box attack and aim to hide targeted individuals from the detection of deep graph community detection models, which has many applications in real-world scenarios, for example, protecting personal privacy in social networks and understanding camouflage patterns in transaction networks. We propose an iterative learning framework that takes turns to update two modules: one working as the constrained graph generator and the other as the surrogate community detection model. We also find that the adversarial graphs generated by our method can be transferred to other learning based community detection models.

Citations (86)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run custom paper prompts using GPT-5 on this paper.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.