Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channels' Confirmation and Predictions' Confirmation: from the Medical Test to the Raven Paradox (2001.07566v1)

Published 17 Jan 2020 in cs.AI, cs.IT, math.IT, and math.LO

Abstract: After long arguments between positivism and falsificationism, the verification of universal hypotheses was replaced with the confirmation of uncertain major premises. Unfortunately, Hemple discovered the Raven Paradox (RP). Then, Carnap used the logical probability increment as the confirmation measure. So far, many confirmation measures have been proposed. Measure F among them proposed by Kemeny and Oppenheim possesses symmetries and asymmetries proposed by Elles and Fitelson, monotonicity proposed by Greco et al., and normalizing property suggested by many researchers. Based on the semantic information theory, a measure b* similar to F is derived from the medical test. Like the likelihood ratio, b* and F can only indicate the quality of channels or the testing means instead of the quality of probability predictions. And, it is still not easy to use b*, F, or another measure to clarify the RP. For this reason, measure c* similar to the correct rate is derived. The c* has the simple form: (a-c)/max(a, c); it supports the Nicod Criterion and undermines the Equivalence Condition, and hence, can be used to eliminate the RP. Some examples are provided to show why it is difficult to use one of popular confirmation measures to eliminate the RP. Measure F, b*, and c* indicate that fewer counterexamples' existence is more essential than more positive examples' existence, and hence, are compatible with Popper's falsification thought.

Citations (11)

Summary

We haven't generated a summary for this paper yet.