Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evidential Confirmation as Transformed Probability (1304.3439v1)

Published 27 Mar 2013 in cs.AI

Abstract: A considerable body of work in AI has been concerned with aggregating measures of confirmatory and disconfirmatory evidence for a common set of propositions. Claiming classical probability to be inadequate or inappropriate, several researchers have gone so far as to invent new formalisms and methods. We show how to represent two major such alternative approaches to evidential confirmation not only in terms of transformed (Bayesian) probability, but also in terms of each other. This unifies two of the leading approaches to confirmation theory, by showing that a revised MYCIN Certainty Factor method [12] is equivalent to a special case of Dempster-Shafer theory. It yields a well-understood axiomatic basis, i.e. conditional independence, to interpret previous work on quantitative confirmation theory. It substantially resolves the "taxe-them-or-leave-them" problem of priors: MYCIN had to leave them out, while PROSPECTOR had to have them in. It recasts some of confirmation theory's advantages in terms of the psychological accessibility of probabilistic information in different (transformed) formats. Finally, it helps to unify the representation of uncertain reasoning (see also [11]).

Citations (19)

Summary

We haven't generated a summary for this paper yet.