Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems (2001.06210v3)

Published 17 Jan 2020 in math.AP and math.FA

Abstract: We prove a unique continuation property for the fractional Laplacian $(-\Delta)s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincar\'e-type inequalities for the operator $(-\Delta)s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schr\"odinger equation. We also study the higher order fractional Schr\"odinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-plane Radon transform in low regularity. Our work extends some recent results in inverse problems for more general operators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.