Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Distance between configurations in MCMC simulations and the geometrical optimization of the tempering algorithms (2001.02028v1)

Published 7 Jan 2020 in hep-lat and hep-th

Abstract: For a given Markov chain Monte Carlo (MCMC) algorithm, we define the distance between configurations that quantifies the difficulty of transitions. This distance enables us to investigate MCMC algorithms in a geometrical way, and we investigate the geometry of the simulated tempering algorithm implemented for an extremely multimodal system with highly degenerate vacua. We show that the large scale geometry of the extended configuration space is given by an asymptotically anti-de Sitter metric, and argue in a simple, geometrical way that the tempering parameter should be best placed exponentially to acquire high acceptance rates for transitions in the extra dimension. We also discuss the geometrical optimization of the tempered Lefschetz thimble method, which is an algorithm towards solving the numerical sign problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.