Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Core-Collapse Supernova Gravitational-Wave Search and Deep Learning Classification (2001.00279v1)

Published 1 Jan 2020 in gr-qc, astro-ph.IM, and cs.LG

Abstract: We describe a search and classification procedure for gravitational waves emitted by core-collapse supernova (CCSN) explosions, using a convolutional neural network (CNN) combined with an event trigger generator known as Wavelet Detection Filter (WDF). We employ both a 1-D CNN search using time series gravitational-wave data as input, and a 2-D CNN search with time-frequency representation of the data as input. To test the accuracies of our 1-D and 2-D CNN classification, we add CCSN waveforms from the most recent hydrodynamical simulations of neutrino-driven core-collapse to simulated Gaussian colored noise with the Virgo interferometer and the planned Einstein Telescope sensitivity curve. We find classification accuracies, for a single detector, of over 95% for both 1-D and 2-D CNN pipelines. For the first time in machine learning CCSN studies, we add short duration detector noise transients to our data to test the robustness of our method against false alarms created by detector noise artifacts. Further to this, we show that the CNN can distinguish between different types of CCSN waveform models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alberto Iess (5 papers)
  2. Elena Cuoco (18 papers)
  3. Filip Morawski (8 papers)
  4. Jade Powell (31 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.