Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-inspired spatiotemporal-graph AI ensemble for the detection of higher order wave mode signals of spinning binary black hole mergers (2306.15728v2)

Published 27 Jun 2023 in astro-ph.IM, cs.AI, and gr-qc

Abstract: We present a new class of AI models for the detection of quasi-circular, spinning, non-precessing binary black hole mergers whose waveforms include the higher order gravitational wave modes $(l, |m|)={(2, 2), (2, 1), (3, 3), (3, 2), (4, 4)}$, and mode mixing effects in the $l = 3, |m| = 2$ harmonics. These AI models combine hybrid dilated convolution neural networks to accurately model both short- and long-range temporal sequential information of gravitational waves; and graph neural networks to capture spatial correlations among gravitational wave observatories to consistently describe and identify the presence of a signal in a three detector network encompassing the Advanced LIGO and Virgo detectors. We first trained these spatiotemporal-graph AI models using synthetic noise, using 1.2 million modeled waveforms to densely sample this signal manifold, within 1.7 hours using 256 A100 GPUs in the Polaris supercomputer at the ALCF. Our distributed training approach had optimal performance, and strong scaling up to 512 A100 GPUs. With these AI ensembles we processed data from a three detector network, and found that an ensemble of 4 AI models achieves state-of-the-art performance for signal detection, and reports two misclassifications for every decade of searched data. We distributed AI inference over 128 GPUs in the Polaris supercomputer and 128 nodes in the Theta supercomputer, and completed the processing of a decade of gravitational wave data from a three detector network within 3.5 hours. Finally, we fine-tuned these AI ensembles to process the entire month of February 2020, which is part of the O3b LIGO/Virgo observation run, and found 6 gravitational waves, concurrently identified in Advanced LIGO and Advanced Virgo data, and zero false positives. This analysis was completed in one hour using one A100 GPU.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Deep neural networks to enable real-time multimessenger astrophysics. \JournalTitlePhys. Rev. D 97, 044039, DOI: 10.1103/PhysRevD.97.044039 (2018). 1701.00008.
  2. Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with LIGO Data. In NiPS Summer School 2017 (2017). 1711.07966.
  3. Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data. \JournalTitlePhysics Letters B 778, 64–70, DOI: 10.1016/j.physletb.2017.12.053 (2018). 1711.03121.
  4. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. \JournalTitlePhysical Review Letters 120, 141103, DOI: 10.1103/PhysRevLett.120.141103 (2018). 1712.06041.
  5. Detection of gravitational waves using bayesian neural networks. \JournalTitlePhys. Rev. D 103, 063034, DOI: 10.1103/PhysRevD.103.063034 (2021).
  6. Gravitational-wave signal recognition of LIGO data by deep learning. \JournalTitlePhys. Rev. D 101, 104003, DOI: 10.1103/PhysRevD.101.104003 (2020). 1909.13442.
  7. Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors. \JournalTitleSci. China Phys. Mech. Astron. 62, 969512, DOI: 10.1007/s11433-018-9321-7 (2019). 1811.01380.
  8. Some optimizations on detecting gravitational wave using convolutional neural network. \JournalTitleFront. Phys. (Beijing) 15, 54501, DOI: 10.1007/s11467-020-0966-4 (2020). 1712.00356.
  9. Genetic-algorithm-optimized neural networks for gravitational wave classification. \JournalTitleNeural Computing and Applications 33, 13859–13883 (2021).
  10. Rebei, A. et al. Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers. \JournalTitlePhys. Rev. D 100, 044025, DOI: 10.1103/PhysRevD.100.044025 (2019). 1807.09787.
  11. Deep learning for clustering of continuous gravitational wave candidates. \JournalTitlePhys. Rev. D 101, 064009, DOI: 10.1103/PhysRevD.101.064009 (2020). 2001.03116.
  12. From one to many: A deep learning coincident gravitational-wave search. \JournalTitlePhys. Rev. D 105, 043003, DOI: 10.1103/PhysRevD.105.043003 (2022). 2108.10715.
  13. Training strategies for deep learning gravitational-wave searches. \JournalTitlePhys. Rev. D 105, 043002, DOI: 10.1103/PhysRevD.105.043002 (2022). 2106.03741.
  14. Gunny, A. et al. Hardware-accelerated inference for real-time gravitational-wave astronomy. \JournalTitleNature Astronomy 6, 529–536, DOI: 10.1038/s41550-022-01651-w (2022). 2108.12430.
  15. Schäfer, M. B. et al. First machine learning gravitational-wave search mock data challenge. \JournalTitlePhys. Rev. D 107, 023021, DOI: 10.1103/PhysRevD.107.023021 (2023). 2209.11146.
  16. Andrews, M. et al. DeepSNR: A deep learning foundation for offline gravitational wave detection. \JournalTitlearXiv e-prints arXiv:2207.04749, DOI: 10.48550/arXiv.2207.04749 (2022). 2207.04749.
  17. Nonlinear noise regression in gravitational-wave detectors with convolutional neural networks. \JournalTitlearXiv e-prints arXiv:2111.03295, DOI: 10.48550/arXiv.2111.03295 (2021). 2111.03295.
  18. Source-agnostic gravitational-wave detection with recurrent autoencoders. \JournalTitleMach. Learn. Sci. Tech. 3, 025001, DOI: 10.1088/2632-2153/ac5435 (2022). 2107.12698.
  19. Krastev, P. G. Real-Time Detection of Gravitational Waves from Binary Neutron Stars using Artificial Neural Networks. \JournalTitlePhys. Lett. B 803, 135330, DOI: 10.1016/j.physletb.2020.135330 (2020). 1908.03151.
  20. Detection of gravitational-wave signals from binary neutron star mergers using machine learning. \JournalTitlePhys. Rev. D 102, 063015, DOI: 10.1103/PhysRevD.102.063015 (2020). 2006.01509.
  21. Miller, A. L. et al. How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search? \JournalTitlePhys. Rev. D 100, 062005, DOI: 10.1103/PhysRevD.100.062005 (2019). 1909.02262.
  22. Deep learning for gravitational wave forecasting of neutron star mergers. \JournalTitlePhysics Letters B 816, 136185, DOI: 10.1016/j.physletb.2021.136185 (2021). 2010.09751.
  23. Early warning of coalescing neutron-star and neutron-star-black-hole binaries from the nonstationary noise background using neural networks. \JournalTitlePhys. Rev. D 104, 062004, DOI: 10.1103/PhysRevD.104.062004 (2021). 2104.09438.
  24. Deep Learning Detection and Classification of Gravitational Waves from Neutron Star-Black Hole Mergers. \JournalTitlearXiv e-prints arXiv:2210.15888, DOI: 10.48550/arXiv.2210.15888 (2022). 2210.15888.
  25. Wei, W. et al. Deep Learning with Quantized Neural Networks for Gravitational-wave Forecasting of Eccentric Compact Binary Coalescence. \JournalTitleThe Astrophysical Journal 919, 82, DOI: 10.3847/1538-4357/ac1121 (2021). 2012.03963.
  26. Cuoco, E. et al. Enhancing Gravitational-Wave Science with Machine Learning. \JournalTitleMach. Learn. Sci. Tech. 2, 011002, DOI: 10.1088/2632-2153/abb93a (2021).
  27. Advances in Machine and Deep Learning for Modeling and Real-Time Detection of Multi-messenger Sources. In Handbook of Gravitational Wave Astronomy, 47, DOI: 10.1007/978-981-15-4702-7_47-1 (Springer, Singapore, 2021).
  28. Huerta, E. A. et al. Enabling real-time multi-messenger astrophysics discoveries with deep learning. \JournalTitleNature Reviews Physics 1, 600–608, DOI: 10.1038/s42254-019-0097-4 (2019). 1911.11779.
  29. Machine learning in cosmology and gravitational wave astronomy: recent trends. In ”Horizons in Computer Science Research”, vol. 22, 193–240 (Nova Science Publisher Inc., 2022).
  30. Huerta, E. A. et al. Convergence of Artificial Intelligence and High Performance Computing on NSF-supported Cyberinfrastructure. \JournalTitleJournal of Big Data 7, 88, DOI: 10.1186/s40537-020-00361-2 (2020). 2003.08394.
  31. Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers. \JournalTitlePhysics Letters B 808, 135628, DOI: 10.1016/j.physletb.2020.135628 (2020). 2004.09524.
  32. AI and extreme scale computing to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non-precessing black hole mergers. \JournalTitlePhysics Letters B 835, 137505, DOI: 10.1016/j.physletb.2022.137505 (2022). 2112.07669.
  33. Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers. \JournalTitlePhysics Letters B 812, 136029, DOI: 10.1016/j.physletb.2020.136029 (2021). 2010.15845.
  34. Huerta, E. A. et al. Accelerated, scalable and reproducible AI-driven gravitational wave detection. \JournalTitleNature Astronomy 5, 1062–1068, DOI: 10.1038/s41550-021-01405-0 (2021). 2012.08545.
  35. Inference-Optimized AI and High Performance Computing for Gravitational Wave Detection at Scale. \JournalTitleFront. Artif. Intell. 5, 828672, DOI: 10.3389/frai.2022.828672 (2022). 2201.11133.
  36. Pratten, G. et al. Computationally efficient models for the dominant and subdominant harmonic modes of precessing binary black holes. \JournalTitlePhys. Rev. D 103, 104056, DOI: 10.1103/PhysRevD.103.104056 (2021). 2004.06503.
  37. The LIGO Open Science Center. \JournalTitleJ. Phys. Conf. Ser. 610, 012021, DOI: 10.1088/1742-6596/610/1/012021 (2015). 1410.4839.
  38. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with advanced ligo, advanced virgo and kagra. \JournalTitleLiving Reviews in Relativity 23, 3, DOI: 10.1007/s41114-020-00026-9 (2020).
  39. van den Oord, A. et al. WaveNet: A Generative Model for Raw Audio. In 9th ISCA Speech Synthesis Workshop, 125–125 (2016).
  40. Spectral networks and locally connected networks on graphs. \JournalTitlearXiv preprint arXiv:1312.6203 (2013).
  41. Neural message passing for quantum chemistry. In International conference on machine learning, 1263–1272 (PMLR, 2017).
  42. Inductive representation learning on large graphs. In Guyon, I. et al. (eds.) Advances in Neural Information Processing Systems, vol. 30 (Curran Associates, Inc., 2017).
  43. Velickovic, P. et al. Graph attention networks. \JournalTitlestat 1050, 10–48550 (2017).
  44. How powerful are graph neural networks? \JournalTitlearXiv preprint arXiv:1810.00826 (2018).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com