Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Decomposition of Lagrangian classes on K3 surfaces (2001.00202v3)

Published 1 Jan 2020 in math.DG and math.AG

Abstract: We study the decomposability of a Lagrangian homology class on a K3 surface into a sum of classes represented by special Lagrangian submanifolds, and develop criteria for it in terms of lattice theory. As a result, we prove the decomposability on an arbitrary K3 surface with respect to the K\"ahler classes in dense subsets of the K\"ahler cone. Using the same technique, we show that the K\"ahler classes on a K3 surface which admit a special Lagrangian fibration form a dense subset also. This implies that there are infinitely many special Lagrangian 3-tori in any log Calabi-Yau 3-fold.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.