Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks (1912.13503v4)

Published 31 Dec 2019 in cs.LG, cs.CV, cs.NE, and cs.RO

Abstract: When training a neural network for a desired task, one may prefer to adapt a pre-trained network rather than starting from randomly initialized weights. Adaptation can be useful in cases when training data is scarce, when a single learner needs to perform multiple tasks, or when one wishes to encode priors in the network. The most commonly employed approaches for network adaptation are fine-tuning and using the pre-trained network as a fixed feature extractor, among others. In this paper, we propose a straightforward alternative: side-tuning. Side-tuning adapts a pre-trained network by training a lightweight "side" network that is fused with the (unchanged) pre-trained network via summation. This simple method works as well as or better than existing solutions and it resolves some of the basic issues with fine-tuning, fixed features, and other common approaches. In particular, side-tuning is less prone to overfitting, is asymptotically consistent, and does not suffer from catastrophic forgetting in incremental learning. We demonstrate the performance of side-tuning under a diverse set of scenarios, including incremental learning (iCIFAR, iTaskonomy), reinforcement learning, imitation learning (visual navigation in Habitat), NLP question-answering (SQuAD v2), and single-task transfer learning (Taskonomy), with consistently promising results.

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.