Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simple baseline for domain adaptation using rotation prediction (1912.11903v1)

Published 26 Dec 2019 in cs.CV

Abstract: Recently, domain adaptation has become a hot research area with lots of applications. The goal is to adapt a model trained in one domain to another domain with scarce annotated data. We propose a simple yet effective method based on self-supervised learning that outperforms or is on par with most state-of-the-art algorithms, e.g. adversarial domain adaptation. Our method involves two phases: predicting random rotations (self-supervised) on the target domain along with correct labels for the source domain (supervised), and then using self-distillation on the target domain. Our simple method achieves state-of-the-art results on semi-supervised domain adaptation on DomainNet dataset. Further, we observe that the unlabeled target datasets of popular domain adaptation benchmarks do not contain any categories apart from testing categories. We believe this introduces a bias that does not exist in many real applications. We show that removing this bias from the unlabeled data results in a large drop in performance of state-of-the-art methods, while our simple method is relatively robust.

Citations (5)

Summary

We haven't generated a summary for this paper yet.