Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utterance-level Permutation Invariant Training with Latency-controlled BLSTM for Single-channel Multi-talker Speech Separation (1912.11613v1)

Published 25 Dec 2019 in cs.SD, cs.LG, and eess.AS

Abstract: Utterance-level permutation invariant training (uPIT) has achieved promising progress on single-channel multi-talker speech separation task. Long short-term memory (LSTM) and bidirectional LSTM (BLSTM) are widely used as the separation networks of uPIT, i.e. uPIT-LSTM and uPIT-BLSTM. uPIT-LSTM has lower latency but worse performance, while uPIT-BLSTM has better performance but higher latency. In this paper, we propose using latency-controlled BLSTM (LC-BLSTM) during inference to fulfill low-latency and good-performance speech separation. To find a better training strategy for BLSTM-based separation network, chunk-level PIT (cPIT) and uPIT are compared. The experimental results show that uPIT outperforms cPIT when LC-BLSTM is used during inference. It is also found that the inter-chunk speaker tracing (ST) can further improve the separation performance of uPIT-LC-BLSTM. Evaluated on the WSJ0 two-talker mixed-speech separation task, the absolute gap of signal-to-distortion ratio (SDR) between uPIT-BLSTM and uPIT-LC-BLSTM is reduced to within 0.7 dB.

Citations (7)

Summary

We haven't generated a summary for this paper yet.