Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Discrete Dynamical System Approaches for Boolean Polynomial Optimization (1912.10221v2)

Published 21 Dec 2019 in math.OC and math.DS

Abstract: In this article, we discuss the numerical solution of Boolean polynomial programs by algorithms borrowing from numerical methods for differential equations, namely the Houbolt scheme, the Lie scheme, and a Runge-Kutta scheme. We first introduce a quartic penalty functional (of Ginzburg-Landau type) to approximate the Boolean program by a continuous one and prove some convergence results as the penalty parameter $\varepsilon$ converges to $0$. We prove also that, under reasonable assumptions, the distance between local minimizers of the penalized problem and the set ${\pm1}n$ is of order $O(\sqrt{n}\varepsilon)$. Next, we introduce algorithms for the numerical solution of the penalized problem, these algorithms relying on the Houbolt, Lie and Runge-Kutta schemes, classical methods for the numerical solution of ordinary or partial differential equations. We performed numerical experiments to investigate the impact of various parameters on the convergence of the algorithms. We have tested our ODE approaches and compared with the classical nonlinear optimization solver IPOPT and a quadratic binary formulation approach (QB-G) as well as an exhaustive method using parallel computing techniques. The numerical results on various datasets (including small and large-scale randomly generated synthetic datasets of general Boolean polynomial optimization problems, and a large-scale heterogeneous MQLib benchmark dataset of Max-Cut and Quadratic Unconstrained Binary Optimization (QUBO) problems) show good performances for our ODE approaches. As a result, our ODE algorithms often converge faster than the other compared methods to better integer solutions of the Boolean program.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.