Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Heterogeneous Social Network Alignment through Synergistic Graph Partition (1912.08372v3)

Published 18 Dec 2019 in cs.SI and physics.soc-ph

Abstract: Social network alignment has been an important research problem for social network analysis in recent years. With the identified shared users across networks, it will provide researchers with the opportunity to achieve a more comprehensive understanding of users' social activities both within and across networks. Social network alignment is a very difficult problem. Besides the challenges introduced by the network heterogeneity, the network alignment problem can be reduced to a combinatorial optimization problem with an extremely large search space. The learning effectiveness and efficiency of existing alignment models will be degraded significantly as the network size increases. In this paper, we will focus on studying the scalable heterogeneous social network alignment problem, and propose to address it with a novel two-stage network alignment model, namely \textbf{S}calable \textbf{H}eterogeneous \textbf{N}etwork \textbf{A}lignment (SHNA). Based on a group of intra- and inter-network meta diagrams, SHNA first partitions the social networks into a group of sub-networks synergistically. Via the partially known anchor links, SHNA will extract the partitioned sub-network correspondence relationships. Instead of aligning the complete input network, SHNA proposes to identify the anchor links between the matched sub-network pairs, while those between the unmatched sub-networks will be pruned to effectively shrink the search space. Extensive experiments have been done to compare SHNA with the state-of-the-art baseline methods on a real-world aligned social networks dataset. The experimental results have demonstrated both the effectiveness and efficiency of the {\our} model in addressing the problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.