Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Network Alignment with Anchor Meta Path and Truncated Generic Stable Matching (1506.05164v1)

Published 16 Jun 2015 in cs.SI

Abstract: To enjoy more social network services, users nowadays are usually involved in multiple online social networks simultaneously. The shared users between different networks are called anchor users, while the remaining unshared users are named as non-anchor users. Connections between accounts of anchor users in different networks are defined as anchor links and networks partially aligned by anchor links can be represented as partially aligned networks. In this paper, we want to predict anchor links between partially aligned social networks, which is formally defined as the partial network alignment problem. The partial network alignment problem is very difficult to solve because of the following two challenges: (1) the lack of general features for anchor links, and (2) the "one-to-one$_\le$" (one to at most one) constraint on anchor links. To address these two challenges, a new method PNA (Partial Network Aligner) is proposed in this paper. PNA (1) extracts a set of explicit anchor adjacency features and latent topological features for anchor links based on the anchor meta path concept and tensor decomposition techniques, and (2) utilizes the generic stable matching to identify the non-anchor users to prune the redundant anchor links attached to them. Extensive experiments conducted on two real-world partially aligned social networks demonstrate that PNA can solve the partial network alignment problem very well and outperform all the other comparison methods with significant advantages.

Citations (10)

Summary

We haven't generated a summary for this paper yet.