Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher order Galerkin-collocation time discretization with Nitsche's method for the Navier-Stokes equations (1912.07426v2)

Published 16 Dec 2019 in math.NA and cs.NA

Abstract: We propose and study numerically the implicit approximation in time of the Navier-Stokes equations by a Galerkin-collocation method in time combined with inf-sup stable finite element methods in space. The conceptual basis of the Galerkin-collocation approach is the establishment of a direct connection between the Galerkin method and the classical collocation methods, with the perspective of achieving the accuracy of the former with reduced computational costs in terms of less complex algebraic systems of the latter. Regularity of higher order in time of the discrete solution is ensured further. As an additional ingredient, we employ Nitsche's method to impose all boundary conditions in weak form with the perspective that evolving domains become feasible in the future. We carefully compare the performance poroperties of the Galerkin-collocation approach with a standard continuous Galerkin-Petrov method using piecewise linear polynomials in time, that is algebraically equivalent to the popular Crank-Nicholson scheme. The condition number of the arising linear systems after Newton linearization as well as the reliable approximation of the drag and lift coefficient for laminar flow around a cylinder (DFG flow benchmark with $Re=100$) are investigated. The superiority of the Galerkin-collocation approach over the linear in time, continuous Galerkin-Petrov method is demonstrated therein.

Citations (11)

Summary

We haven't generated a summary for this paper yet.