2000 character limit reached
On the convergence of Jacobi-type algorithms for Independent Component Analysis (1912.07194v2)
Published 16 Dec 2019 in math.NA and cs.NA
Abstract: Jacobi-type algorithms for simultaneous approximate diagonalization of real (or complex) symmetric tensors have been widely used in independent component analysis (ICA) because of their good performance. One natural way of choosing the index pairs in Jacobi-type algorithms is the classical cyclic ordering, while the other way is based on the Riemannian gradient in each iteration. In this paper, we mainly review in an accessible manner our recent results in a series of papers about weak and global convergence of these Jacobi-type algorithms. These results are mainly based on the Lojasiewicz gradient inequality.