Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jacobi-type algorithm for low rank orthogonal approximation of symmetric tensors and its convergence analysis (1911.00659v2)

Published 2 Nov 2019 in math.NA and cs.NA

Abstract: In this paper, we propose a Jacobi-type algorithm to solve the low rank orthogonal approximation problem of symmetric tensors. This algorithm includes as a special case the well-known Jacobi CoM2 algorithm for the approximate orthogonal diagonalization problem of symmetric tensors. We first prove the weak convergence of this algorithm, \textit{i.e.} any accumulation point is a stationary point. Then we study the global convergence of this algorithm under a gradient based ordering for a special case: the best rank-2 orthogonal approximation of 3rd order symmetric tensors, and prove that an accumulation point is the unique limit point under some conditions. Numerical experiments are presented to show the efficiency of this algorithm.

Citations (9)

Summary

We haven't generated a summary for this paper yet.