Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Constructing high order spherical designs as a union of two of lower order (1912.07151v1)

Published 16 Dec 2019 in math.MG and math.CO

Abstract: We show how the variational characterisation of spherical designs can be used to take a union of spherical designs to obtain a spherical design of higher order (degree, precision, exactness) with a small number of points. The examples that we consider involve taking the orbits of two vectors under the action of a complex reflection group to obtain a weighted spherical $(t,t)$-design. These designs have a high degree of symmetry (compared to the number of points), and many are the first known construction of such a design, e.g., a $32$ point $(9,9)$-design for $\mathbb{C}2$, a $48$ point $(4,4)$-design for $\mathbb{C}3$, and a $400$ point $(5,5)$-design for $\mathbb{C}4$.From a real reflection group, we construct a $360$ point $(9,9)$-design for $\mathbb{R}4$ (spherical half-design of order $18$), i.e., a $720$ point spherical $19$-design for $\mathbb{R}4$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.