Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Finitary isomorphisms of renewal point processes and continuous-time regenerative processes (1912.03786v1)

Published 8 Dec 2019 in math.PR and math.DS

Abstract: We show that a large class of stationary continuous-time regenerative processes are finitarily isomorphic to one another. The key is showing that any stationary renewal point process whose jump distribution is absolutely continuous with exponential tails is finitarily isomorphic to a Poisson point process. We further give simple necessary and sufficient conditions for a renewal point process to be finitarily isomorphic to a Poisson point process. This improves results and answers several questions of Soo and of Kosloff and Soo.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.