Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Networks with Cheap Differential Operators (1912.03579v1)

Published 8 Dec 2019 in cs.LG and stat.ML

Abstract: Gradients of neural networks can be computed efficiently for any architecture, but some applications require differential operators with higher time complexity. We describe a family of restricted neural network architectures that allow efficient computation of a family of differential operators involving dimension-wise derivatives, used in cases such as computing the divergence. Our proposed architecture has a Jacobian matrix composed of diagonal and hollow (non-diagonal) components. We can then modify the backward computation graph to extract dimension-wise derivatives efficiently with automatic differentiation. We demonstrate these cheap differential operators for solving root-finding subproblems in implicit ODE solvers, exact density evaluation for continuous normalizing flows, and evaluating the Fokker--Planck equation for training stochastic differential equation models.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com