Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distance to the stochastic part of phylogenetic varieties (1912.02138v2)

Published 4 Dec 2019 in q-bio.PE and math.CO

Abstract: Modelling the substitution of nucleotides along a phylogenetic tree is usually done by a hidden Markov process. This allows to define a distribution of characters at the leaves of the trees and one might be able to obtain polynomial relationships among the probabilities of different characters. The study of these polynomials and the geometry of the algebraic varieties defined by them can be used to reconstruct phylogenetic trees. However, not all points in these algebraic varieties have biological sense. In this paper, we explore the extent to which adding semi-algebraic conditions arising from the restriction to parameters with statistical meaning can improve existing methods of phylogenetic reconstruction. To this end, our aim is to compute the distance of data points to algebraic varieties and to the stochastic part of these varieties. Computing these distances involves optimization by nonlinear programming algorithms. We use analytical methods to find some of these distances for quartet trees evolving under the Kimura 3-parameter or the Jukes-Cantor models. Numerical algebraic geometry and computational algebra play also a fundamental role in this paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube