Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Online Model Adaptation by Extended Kalman Filter with Exponential Moving Average and Dynamic Multi-Epoch Strategy (1912.01790v3)

Published 4 Dec 2019 in cs.LG and stat.ML

Abstract: High fidelity behavior prediction of intelligent agents is critical in many applications. However, the prediction model trained on the training set may not generalize to the testing set due to domain shift and time variance. The challenge motivates the adoption of online adaptation algorithms to update prediction models in real-time to improve the prediction performance. Inspired by Extended Kalman Filter (EKF), this paper introduces a series of online adaptation methods, which are applicable to neural network-based models. A base adaptation algorithm Modified EKF with forgetting factor (MEKF$\lambda$) is introduced first, followed by exponential moving average filtering techniques. Then this paper introduces a dynamic multi-epoch update strategy to effectively utilize samples received in real time. With all these extensions, we propose a robust online adaptation algorithm: MEKF with Exponential Moving Average and Dynamic Multi-Epoch strategy (MEKF${\text{EMA-DME}}$). The proposed algorithm outperforms existing methods as demonstrated in experiments. The source code is open-sourced in the following link https://github.com/intelligent-control-lab/MEKF_MAME.

Citations (11)

Summary

We haven't generated a summary for this paper yet.