Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Time-Guided High-Order Attention Model of Longitudinal Heterogeneous Healthcare Data (1912.00773v1)

Published 28 Nov 2019 in cs.LG

Abstract: Due to potential applications in chronic disease management and personalized healthcare, the EHRs data analysis has attracted much attention of both researchers and practitioners. There are three main challenges in modeling longitudinal and heterogeneous EHRs data: heterogeneity, irregular temporality and interpretability. A series of deep learning methods have made remarkable progress in resolving these challenges. Nevertheless, most of existing attention models rely on capturing the 1-order temporal dependencies or 2-order multimodal relationships among feature elements. In this paper, we propose a time-guided high-order attention (TGHOA) model. The proposed method has three major advantages. (1) It can model longitudinal heterogeneous EHRs data via capturing the 3-order correlations of different modalities and the irregular temporal impact of historical events. (2) It can be used to identify the potential concerns of medical features to explain the reasoning process of the healthcare model. (3) It can be easily expanded into cases with more modalities and flexibly applied in different prediction tasks. We evaluate the proposed method in two tasks of mortality prediction and disease ranking on two real world EHRs datasets. Extensive experimental results show the effectiveness of the proposed model.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.