Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Attention Masks Improve Adversarial Robustness? (1911.11946v2)

Published 27 Nov 2019 in cs.CV, cs.CR, and cs.LG

Abstract: Deep Neural Networks (DNNs) are known to be susceptible to adversarial examples. Adversarial examples are maliciously crafted inputs that are designed to fool a model, but appear normal to human beings. Recent work has shown that pixel discretization can be used to make classifiers for MNIST highly robust to adversarial examples. However, pixel discretization fails to provide significant protection on more complex datasets. In this paper, we take the first step towards reconciling these contrary findings. Focusing on the observation that discrete pixelization in MNIST makes the background completely black and foreground completely white, we hypothesize that the important property for increasing robustness is the elimination of image background using attention masks before classifying an object. To examine this hypothesis, we create foreground attention masks for two different datasets, GTSRB and MS-COCO. Our initial results suggest that using attention mask leads to improved robustness. On the adversarially trained classifiers, we see an adversarial robustness increase of over 20% on MS-COCO.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com