Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Intrinsic Dataset Properties for Adversarial Machine Learning (2005.09170v1)

Published 19 May 2020 in cs.LG and stat.ML

Abstract: Deep neural networks (DNNs) have played a key role in a wide range of machine learning applications. However, DNN classifiers are vulnerable to human-imperceptible adversarial perturbations, which can cause them to misclassify inputs with high confidence. Thus, creating robust DNNs which can defend against malicious examples is critical in applications where security plays a major role. In this paper, we study the effect of intrinsic dataset properties on the performance of adversarial attack and defense methods, testing on five popular image classification datasets - MNIST, Fashion-MNIST, CIFAR10/CIFAR100, and ImageNet. We find that input size and image contrast play key roles in attack and defense success. Our discoveries highlight that dataset design and data preprocessing steps are important to boost the adversarial robustness of DNNs. To our best knowledge, this is the first comprehensive work that studies the effect of intrinsic dataset properties on adversarial machine learning.

Citations (1)

Summary

We haven't generated a summary for this paper yet.