Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymmetric Correntropy for Robust Adaptive Filtering (1911.11855v2)

Published 21 Nov 2019 in eess.SP, cs.LG, and stat.ML

Abstract: In recent years, correntropy has been seccessfully applied to robust adaptive filtering to eliminate adverse effects of impulsive noises or outliers. Correntropy is generally defined as the expectation of a Gaussian kernel between two random variables. This definition is reasonable when the error between the two random variables is symmetrically distributed around zero. For the case of asymmetric error distribution, the symmetric Gaussian kernel is however inappropriate and cannot adapt to the error distribution well. To address this problem, in this brief we propose a new variant of correntropy, named asymmetric correntropy, which uses an asymmetric Gaussian model as the kernel function. In addition, a robust adaptive filtering algorithm based on asymmetric correntropy is developed and its steady-state convergence performance is analyzed. Simulations are provided to confirm the theoretical results and good performance of the proposed algorithm.

Citations (16)

Summary

We haven't generated a summary for this paper yet.