Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Correntropy Criterion with Variable Center (1904.06501v1)

Published 13 Apr 2019 in stat.ML and cs.LG

Abstract: Correntropy is a local similarity measure defined in kernel space and the maximum correntropy criterion (MCC) has been successfully applied in many areas of signal processing and machine learning in recent years. The kernel function in correntropy is usually restricted to the Gaussian function with center located at zero. However, zero-mean Gaussian function may not be a good choice for many practical applications. In this study, we propose an extended version of correntropy, whose center can locate at any position. Accordingly, we propose a new optimization criterion called maximum correntropy criterion with variable center (MCC-VC). We also propose an efficient approach to optimize the kernel width and center location in MCC-VC. Simulation results of regression with linear in parameters (LIP) models confirm the desirable performance of the new method.

Citations (77)

Summary

We haven't generated a summary for this paper yet.