Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Generalized Bayesian Approach to Model Calibration (1911.11715v3)

Published 26 Nov 2019 in stat.ME

Abstract: In model development, model calibration and validation play complementary roles toward learning reliable models. In this article, we expand the Bayesian Validation Metric framework to a general calibration and validation framework by inverting the validation mathematics into a generalized Bayesian method for model calibration and regression. We perform Bayesian regression based on a user's definition of model-data agreement. This allows for model selection on any type of data distribution, unlike Bayesian and standard regression techniques, that "fail" in some cases. We show that our tool is capable of representing and combining least squares, likelihood-based, and Bayesian calibration techniques in a single framework while being able to generalize aspects of these methods. This tool also offers new insights into the interpretation of the predictive envelopes (also known as confidence bands) while giving the analyst more control over these envelopes. We demonstrate the validity of our method by providing three numerical examples to calibrate different models, including a model for energy dissipation in lap joints under impact loading. By calibrating models with respect to the validation metrics one desires a model to ultimately pass, reliability and safety metrics may be integrated into and automatically adopted by the model in the calibration phase.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.