Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logical Interpretations of Autoencoders (1911.11629v1)

Published 26 Nov 2019 in cs.AI, cs.LG, and cs.LO

Abstract: The unification of low-level perception and high-level reasoning is a long-standing problem in artificial intelligence, which has the potential to not only bring the areas of logic and learning closer together but also demonstrate how abstract concepts might emerge from sensory data. Precisely because deep learning methods dominate perception-based learning, including vision, speech, and linguistic grammar, there is fast-growing literature on how to integrate symbolic reasoning and deep learning. Broadly, efforts seem to fall into three camps: those focused on defining a logic whose formulas capture deep learning, ones that integrate symbolic constraints in deep learning, and others that allow neural computations and symbolic reasoning to co-exist separately, to enjoy the strengths of both worlds. In this paper, we identify another dimension to this inquiry: what do the hidden layers really capture, and how can we reason about that logically? In particular, we consider autoencoders that are widely used for dimensionality reduction and inject a symbolic generative framework onto the feature layer. This allows us, among other things, to generate example images for a class to get a sense of what was learned. Moreover, the modular structure of the proposed model makes it possible to learn relations over multiple images at a time, as well as handle noisy labels. Our empirical evaluations show the promise of this inquiry.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anton Fuxjaeger (2 papers)
  2. Vaishak Belle (59 papers)

Summary

We haven't generated a summary for this paper yet.