Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DDNet: Dual-path Decoder Network for Occlusion Relationship Reasoning (1911.11582v3)

Published 26 Nov 2019 in cs.CV

Abstract: Occlusion relationship reasoning based on convolution neural networks consists of two subtasks: occlusion boundary extraction and occlusion orientation inference. Due to the essential differences between the two subtasks in the feature expression at the higher and lower stages, it is challenging to carry on them simultaneously in one network. To address this issue, we propose a novel Dual-path Decoder Network, which uniformly extracts occlusion information at higher stages and separates into two paths to recover boundary and occlusion orientation respectively in lower stages. Besides, considering the restriction of occlusion orientation presentation to occlusion orientation learning, we design a new orthogonal representation for occlusion orientation and proposed the Orthogonal Orientation Regression loss which can get rid of the unfitness between occlusion representation and learning and further prompt the occlusion orientation learning. Finally, we apply a multi-scale loss together with our proposed orientation regression loss to guide the boundary and orientation path learning respectively. Experiments demonstrate that our proposed method achieves state-of-the-art results on PIOD and BSDS ownership datasets.

Summary

We haven't generated a summary for this paper yet.