Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Occlusion-shared and Feature-separated Network for Occlusion Relationship Reasoning (1908.05898v1)

Published 16 Aug 2019 in cs.CV and eess.IV

Abstract: Occlusion relationship reasoning demands closed contour to express the object, and orientation of each contour pixel to describe the order relationship between objects. Current CNN-based methods neglect two critical issues of the task: (1) simultaneous existence of the relevance and distinction for the two elements, i.e, occlusion edge and occlusion orientation; and (2) inadequate exploration to the orientation features. For the reasons above, we propose the Occlusion-shared and Feature-separated Network (OFNet). On one hand, considering the relevance between edge and orientation, two sub-networks are designed to share the occlusion cue. On the other hand, the whole network is split into two paths to learn the high-level semantic features separately. Moreover, a contextual feature for orientation prediction is extracted, which represents the bilateral cue of the foreground and background areas. The bilateral cue is then fused with the occlusion cue to precisely locate the object regions. Finally, a stripe convolution is designed to further aggregate features from surrounding scenes of the occlusion edge. The proposed OFNet remarkably advances the state-of-the-art approaches on PIOD and BSDS ownership dataset. The source code is available at https://github.com/buptlr/OFNet.

Citations (26)

Summary

We haven't generated a summary for this paper yet.