Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Corrigendum on the proof of completeness for exceptional Hermite polynomials (1911.10602v1)

Published 24 Nov 2019 in math.CA, math-ph, math.MP, and nlin.SI

Abstract: Exceptional orthogonal polynomials are complete families of orthogonal polynomials that arise as eigenfunctions of a Sturm-Liouville problem. Antonio Dur\'an discovered a gap in the original proof of completeness for exceptional Hermite polynomials, that has propagated to analogous results for other exceptional families. In this paper we provide an alternative proof that follows essentially the same arguments, but provides a direct proof of the key lemma on which the completeness proof is based. This direct proof makes use of the theory of trivial monodromy potentials developed by Duistermaat and Gr\"unbaum and Oblomkov.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube