Linear filtering with fractional noises: large time and small noise asymptotics (1911.10062v2)
Abstract: The classical state-space approach to optimal estimation of stochastic processes is efficient when the driving noises are generated by martingales. In particular, the weight function of the optimal linear filter, which solves a complicated operator equation in general, simplifies to the Riccati ordinary differential equation in the martingale case. This reduction lies in the foundations of the Kalman-Bucy approach to linear optimal filtering. In this paper we consider a basic Kalman-Bucy model with noises, generated by independent fractional Brownian motions, and develop a new method of asymptotic analysis of the integro-differential filtering equation arising in this case. We establish existence of the steady-state error limit and find its asymptotic scaling in the high signal-to-noise regime. Closed form expressions are derived in a number of important cases.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.