Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observe Before Play: Multi-armed Bandit with Pre-observations (1911.09458v1)

Published 21 Nov 2019 in cs.LG and stat.ML

Abstract: We consider the stochastic multi-armed bandit (MAB) problem in a setting where a player can pay to pre-observe arm rewards before playing an arm in each round. Apart from the usual trade-off between exploring new arms to find the best one and exploiting the arm believed to offer the highest reward, we encounter an additional dilemma: pre-observing more arms gives a higher chance to play the best one, but incurs a larger cost. For the single-player setting, we design an Observe-Before-Play Upper Confidence Bound (OBP-UCB) algorithm for $K$ arms with Bernoulli rewards, and prove a $T$-round regret upper bound $O(K2\log T)$. In the multi-player setting, collisions will occur when players select the same arm to play in the same round. We design a centralized algorithm, C-MP-OBP, and prove its $T$-round regret relative to an offline greedy strategy is upper bounded in $O(\frac{K4}{M2}\log T)$ for $K$ arms and $M$ players. We also propose distributed versions of the C-MP-OBP policy, called D-MP-OBP and D-MP-Adapt-OBP, achieving logarithmic regret with respect to collision-free target policies. Experiments on synthetic data and wireless channel traces show that C-MP-OBP and D-MP-OBP outperform random heuristics and offline optimal policies that do not allow pre-observations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinhang Zuo (24 papers)
  2. Xiaoxi Zhang (21 papers)
  3. Carlee Joe-Wong (69 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.