Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Power of Factorization Mechanisms in Local and Central Differential Privacy (1911.08339v1)

Published 19 Nov 2019 in cs.DS, cs.CR, and cs.LG

Abstract: We give new characterizations of the sample complexity of answering linear queries (statistical queries) in the local and central models of differential privacy: *In the non-interactive local model, we give the first approximate characterization of the sample complexity. Informally our bounds are tight to within polylogarithmic factors in the number of queries and desired accuracy. Our characterization extends to agnostic learning in the local model. *In the central model, we give a characterization of the sample complexity in the high-accuracy regime that is analogous to that of Nikolov, Talwar, and Zhang (STOC 2013), but is both quantitatively tighter and has a dramatically simpler proof. Our lower bounds apply equally to the empirical and population estimation problems. In both cases, our characterizations show that a particular factorization mechanism is approximately optimal, and the optimal sample complexity is bounded from above and below by well studied factorization norms of a matrix associated with the queries.

Citations (53)

Summary

We haven't generated a summary for this paper yet.