Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds for Differential Privacy from Gaussian Width (1612.02914v1)

Published 9 Dec 2016 in cs.DS

Abstract: We study the optimal sample complexity of a given workload of linear queries under the constraints of differential privacy. The sample complexity of a query answering mechanism under error parameter $\alpha$ is the smallest $n$ such that the mechanism answers the workload with error at most $\alpha$ on any database of size $n$. Following a line of research started by Hardt and Talwar [STOC 2010], we analyze sample complexity using the tools of asymptotic convex geometry. We study the sensitivity polytope, a natural convex body associated with a query workload that quantifies how query answers can change between neighboring databases. This is the information that, roughly speaking, is protected by a differentially private algorithm, and, for this reason, we expect that a "bigger" sensitivity polytope implies larger sample complexity. Our results identify the mean Gaussian width as an appropriate measure of the size of the polytope, and show sample complexity lower bounds in terms of this quantity. Our lower bounds completely characterize the workloads for which the Gaussian noise mechanism is optimal up to constants as those having asymptotically maximal Gaussian width. Our techniques also yield an alternative proof of Pisier's Volume Number Theorem which also suggests an approach to improving the parameters of the theorem.

Citations (11)

Summary

We haven't generated a summary for this paper yet.