Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Genus Two Quasi-Siegel Modular Forms and Gromov-Witten Theory of Toric Calabi-Yau Threefolds (1911.07204v4)

Published 17 Nov 2019 in math.AG, math-ph, math.MP, and math.NT

Abstract: We first develop theories of differential rings of quasi-Siegel modular and quasi-Siegel Jacobi forms for genus two. Then we apply them to the Eynard-Orantin topological recursion of certain local Calabi-Yau threefolds equipped with branes, whose mirror curves are genus two hyperelliptic curves. By the proof of the Remodeling Conjecture, we prove that the corresponding open- and closed- Gromov-Witten potentials are essentially quasi-Siegel Jacobi and quasi-Siegel modular forms for genus two, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.