Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independent and automatic evaluation of acoustic-to-articulatory inversion models (1911.06573v1)

Published 15 Nov 2019 in eess.AS, cs.CL, and cs.SD

Abstract: Reconstruction of articulatory trajectories from the acoustic speech signal has been proposed for improving speech recognition and text-to-speech synthesis. However, to be useful in these settings, articulatory reconstruction must be speaker independent. Furthermore, as most research focuses on single, small datasets with few speakers, robust articulatory reconstrucion could profit from combining datasets. Standard evaluation measures such as root mean square error and Pearson correlation are inappropriate for evaluating the speaker-independence of models or the usefulness of combining datasets. We present a new evaluation for articulatory reconstruction which is independent of the articulatory data set used for training: the phone discrimination ABX task. We use the ABX measure to evaluate a Bi-LSTM based model trained on 3 datasets (14 speakers), and show that it gives information complementary to the standard measures, and enables us to evaluate the effects of dataset merging, as well as the speaker independence of the model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.