Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving generalization of vocal tract feature reconstruction: from augmented acoustic inversion to articulatory feature reconstruction without articulatory data (1809.00938v2)

Published 4 Sep 2018 in cs.CL

Abstract: We address the problem of reconstructing articulatory movements, given audio and/or phonetic labels. The scarce availability of multi-speaker articulatory data makes it difficult to learn a reconstruction that generalizes to new speakers and across datasets. We first consider the XRMB dataset where audio, articulatory measurements and phonetic transcriptions are available. We show that phonetic labels, used as input to deep recurrent neural networks that reconstruct articulatory features, are in general more helpful than acoustic features in both matched and mismatched training-testing conditions. In a second experiment, we test a novel approach that attempts to build articulatory features from prior articulatory information extracted from phonetic labels. Such approach recovers vocal tract movements directly from an acoustic-only dataset without using any articulatory measurement. Results show that articulatory features generated by this approach can correlate up to 0.59 Pearson product-moment correlation with measured articulatory features.

Citations (1)

Summary

We haven't generated a summary for this paper yet.