Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Overview of Data-Importance Aware Radio Resource Management for Edge Machine Learning (1911.03878v2)

Published 10 Nov 2019 in cs.IT, cs.LG, and math.IT

Abstract: The 5G network connecting billions of Internet-of-Things (IoT) devices will make it possible to harvest an enormous amount of real-time mobile data. Furthermore, the 5G virtualization architecture will enable cloud computing at the (network) edge. The availability of both rich data and computation power at the edge has motivated Internet companies to deploy AI there, creating the hot area of edge-AI. Edge learning, the theme of this project, concerns training edge-AI models, which endow on IoT devices intelligence for responding to real-time events. However, the transmission of high-dimensional data from many edge devices to servers can result in excessive communication latency, creating a bottleneck for edge learning. Traditional wireless techniques deigned for only radio access are ineffective in tackling the challenge. Attempts to overcome the communication bottleneck has led to the development of a new class of techniques for intelligent radio resource management (RRM), called data-importance aware RRM. Their designs feature the interplay of active machine learning and wireless communication. Specifically, the metrics that measure data importance in active learning (e.g., classification uncertainty and data diversity) are applied to RRM for efficient acquisition of distributed data in wireless networks to train AI models at servers. This article aims at providing an introduction to the emerging area of importance-aware RRM. To this end, we will introduce the design principles, survey recent advancements in the area, discuss some design examples, and suggest some promising research opportunities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Dingzhu Wen (21 papers)
  2. Xiaoyang Li (44 papers)
  3. Qunsong Zeng (20 papers)
  4. Jinke Ren (32 papers)
  5. Kaibin Huang (186 papers)
Citations (21)