Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Search for Group Closeness Maximization on Big Graphs (1911.03360v1)

Published 8 Nov 2019 in cs.DS and cs.SI

Abstract: In network analysis and graph mining, closeness centrality is a popular measure to infer the importance of a vertex. Computing closeness efficiently for individual vertices received considerable attention. The NP-hard problem of group closeness maximization, in turn, is more challenging: the objective is to find a vertex group that is central as a whole and state-of-the-art heuristics for it do not scale to very big graphs yet. In this paper, we present new local search heuristics for group closeness maximization. By using randomized approximation techniques and dynamic data structures, our algorithms are often able to perform locally optimal decisions efficiently. The final result is a group with high (but not optimal) closeness centrality. We compare our algorithms to the current state-of-the-art greedy heuristic both on weighted and on unweighted real-world graphs. For graphs with hundreds of millions of edges, our local search algorithms take only around ten minutes, while greedy requires more than ten hours. Overall, our new algorithms are between one and two orders of magnitude faster, depending on the desired group size and solution quality. For example, on weighted graphs and $k = 10$, our algorithms yield solutions of $12,4\%$ higher quality, while also being $793,6\times$ faster. For unweighted graphs and $k = 10$, we achieve solutions within $99,4\%$ of the state-of-the-art quality while being $127,8\times$ faster.

Citations (7)

Summary

We haven't generated a summary for this paper yet.