Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Group Centrality Maximization for Large-scale Graphs (1910.13874v1)

Published 30 Oct 2019 in cs.DS and cs.SI

Abstract: The study of vertex centrality measures is a key aspect of network analysis. Naturally, such centrality measures have been generalized to groups of vertices; for popular measures it was shown that the problem of finding the most central group is $\mathcal{NP}$-hard. As a result, approximation algorithms to maximize group centralities were introduced recently. Despite a nearly-linear running time, approximation algorithms for group betweenness and (to a lesser extent) group closeness are rather slow on large networks due to high constant overheads. That is why we introduce GED-Walk centrality, a new submodular group centrality measure inspired by Katz centrality. In contrast to closeness and betweenness, it considers walks of any length rather than shortest paths, with shorter walks having a higher contribution. We define algorithms that (i) efficiently approximate the GED-Walk score of a given group and (ii) efficiently approximate the (proved to be $\mathcal{NP}$-hard) problem of finding a group with highest GED-Walk score. Experiments on several real-world datasets show that scores obtained by GED-Walk improve performance on common graph mining tasks such as collective classification and graph-level classification. An evaluation of empirical running times demonstrates that maximizing GED-Walk (in approximation) is two orders of magnitude faster compared to group betweenness approximation and for group sizes $\leq 100$ one to two orders faster than group closeness approximation. For graphs with tens of millions of edges, approximate GED-Walk maximization typically needs less than one minute. Furthermore, our experiments suggest that the maximization algorithms scale linearly with the size of the input graph and the size of the group.

Citations (15)

Summary

We haven't generated a summary for this paper yet.