Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diagnostics for Eddy Viscosity Models of Turbulence Including Data-Driven/Neural Network Based Parameterizations (1911.02491v1)

Published 6 Nov 2019 in math.NA and cs.NA

Abstract: Classical eddy viscosity models add a viscosity term with turbulent viscosity coefficient whose specification varies from model to model. Turbulent viscosity coefficient approximations of unknown accuracy are typically constructed by solving associated systems of nonlinear evolution equations or by data driven approaches such as deep neural networks. Often eddy viscosity models over-diffuse, so additional fixes are added. This process increases model complexity and decreases model comprehensibility, leading to the following two questions: Is an eddy viscosity model needed? Does the eddy viscosity model fail? This report derives a posteriori computable conditions that answer these two questions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.