Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models (1911.02322v2)

Published 6 Nov 2019 in cs.CV

Abstract: The initial assessment of skin lesions is typically based on dermoscopic images. As this is a difficult and time-consuming task, machine learning methods using dermoscopic images have been proposed to assist human experts. Other approaches have studied electrical impedance spectroscopy (EIS) as a basis for clinical decision support systems. Both methods represent different ways of measuring skin lesion properties as dermoscopy relies on visible light and EIS uses electric currents. Thus, the two methods might carry complementary features for lesion classification. Therefore, we propose joint deep learning models considering both EIS and dermoscopy for melanoma detection. For this purpose, we first study machine learning methods for EIS that incorporate domain knowledge and previously used heuristics into the design process. As a result, we propose a recurrent model with state-max-pooling which automatically learns the relevance of different EIS measurements. Second, we combine this new model with different convolutional neural networks that process dermoscopic images. We study ensembling approaches and also propose a cross-attention module guiding information exchange between the EIS and dermoscopy model. In general, combinations of EIS and dermoscopy clearly outperform models that only use either EIS or dermoscopy. We show that our attention-based, combined model outperforms other models with specificities of 34.4% (CI 31.3-38.4), 34.7% (CI 31.0-38.8) and 53.7% (CI 50.1-57.6) for dermoscopy, EIS and the combined model, respectively, at a clinically relevant sensitivity of 98%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nils Gessert (32 papers)
  2. Marcel Bengs (21 papers)
  3. Alexander Schlaefer (69 papers)
Citations (3)